Liquid Migration in Shear Thickening Suspensions Flowing through Constrictions
نویسندگان
چکیده
منابع مشابه
Shear thickening and migration in granular suspensions.
We study the emergence of shear thickening in dense suspensions of non-Brownian particles. We combine local velocity and concentration measurements using magnetic resonance imaging with macroscopic rheometry experiments. In steady state, we observe that the material is heterogeneous, and we find that the local rheology presents a continuous transition at low shear rate from a viscous to a shear...
متن کاملShear thickening of cornstarch suspensions
We study the rheology of cornstarch suspensions, a non – Brownian particle system that exhibits discontinuous shear thickening. Using Magnetic Resonance Imaging (MRI), the local properties of the flow are obtained by the determination of local velocity profiles and concentrations in a Couette cell. For low rotational rates, we observe shear localization characteristic of yield stress fluids. Wh...
متن کاملGenerality of shear thickening in dense suspensions.
Suspensions are of wide interest and form the basis for many smart fluids. For most suspensions, the viscosity decreases with increasing shear rate, that is, they shear thin. Few are reported to do the opposite, that is, shear thicken, despite the longstanding expectation that shear thickening is a generic type of suspension behaviour. Here we resolve this apparent contradiction. We demonstrate...
متن کاملDrop formation in shear-thickening granular suspensions.
We study droplet formation in granular suspensions by systematically varying the volume fractions (φ) and particle diameters (d). For suspensions with water as the suspending liquid, we find three different regimes. For dilute suspensions (φ≤45%), drop formation follows the predictions for inertial breakup and exhibits identical dynamics to that of pure water. The breakup is strongly asymmetric...
متن کاملShear thickening in highly viscous granular suspensions
We experimentally investigate shear thickening in dense granular suspensions under oscillatory shear. Directly imaging the suspension-air interface, we observe dilation beyond a critical strain γc and the end of shear thickening as the maximum confining stress is reached and the contact line moves. Analyzing the shear profile, we extract the viscosity contributions due to hydrodynamics ηh, dila...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2019
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.123.128002